Tesseract |
Truncated tesseract |
Rectified tesseract |
Bitruncated tesseract |
Schlegel diagrams centered on [4,3] (cells visible at [3,3]) | |||
16-cell |
Truncated 16-cell |
Rectified 16-cell (24-cell) |
Bitruncated tesseract |
Schlegel diagrams centered on [3,3] (cells visible at [4,3]) |
In geometry, a truncated tesseract is a uniform polychoron (4-dimensional uniform polytope) formed as the truncation of the regular tesseract.
There are three trunctions, including a bitruncation, and a tritruncation, which creates the truncated 16-cell.
Contents |
Trucated tesseract | ||
---|---|---|
Schlegel diagram (tetrahedron cells visible) |
||
Type | Uniform polychoron | |
Schläfli symbol | t0,1{4,3,3} | |
Coxeter-Dynkin diagrams | ||
Cells | 24 | 8 3.8.8 16 3.3.3 |
Faces | 88 | 64 {3} 24 {8} |
Edges | 128 | |
Vertices | 64 | |
Vertex figure | Isosceles triangular pyramid |
|
Dual | Tetrakis 16-cell | |
Symmetry group | A4, [4,3,3] | |
Properties | convex | |
Uniform index | 12 13 14 |
The truncated tesseract is bounded by 24 cells: 8 truncated cubes, and 16 tetrahedra.
The truncated tesseract may be constructed by truncating the vertices of the tesseract at of the edge length. A regular tetrahedron is formed at each truncated vertex.
The Cartesian coordinates of the vertices of a truncated tesseract having edge length 2 is given by all permutations of:
In the truncated cube first parallel projection of the truncated tesseract into 3-dimensional space, the image is laid out as follows:
Coxeter plane | B4 | B3 / D4 / A2 | B2 / D3 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | F4 | A3 | |
Graph | |||
Dihedral symmetry | [12/3] | [4] |
A polyhedral net |
Truncated tesseract projected onto the 3-sphere with a stereographic projection into 3-space. |
Bitruncated tesseract | ||
---|---|---|
Two Schlegel diagrams, centered on truncated tetrahedral or truncated octahedral cells, with alternate cell types hidden. |
||
Type | Uniform polychoron | |
Schläfli symbol | t1,2{4,3,3} t0,1,2{31,1,1} |
|
Coxeter-Dynkin diagrams | ||
Cells | 24 | 8 4.6.6 16 3.6.6 |
Faces | 120 | 32 {3} 24 {4} 64 {6} |
Edges | 192 | |
Vertices | 96 | |
Vertex figure | Digonal disphenoid |
|
Symmetry group | B4, [3,3,4] D4, [31,1,1] |
|
Properties | convex, vertex-transitive | |
Uniform index | 15 16 17 |
The bitruncated tesseract (also called a bitruncated 16-cell) is constructed by a bitruncation operation applied to the tesseract.
A tesseract is bitruncated by truncating its cells beyond their mid-points, turning the eight cubes into eight truncated octahedra. These still share their square faces, but the hexagonal faces form truncated tetrahedra which share their triangular faces with each other.
The Cartesian coordinates of the vertices of a bitruncated tesseract having edge length 2 is given by all permutations of:
The truncated octahedra are connected to each other via their square faces, and to the truncated tetrahedra via their hexagonal faces. The truncated tetrahedra are connected to each other via their triangular faces.
Coxeter plane | B4 | B3 / D4 / A2 | B2 / D3 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | F4 | A3 | |
Graph | |||
Dihedral symmetry | [12/3] | [4] |
The truncated-octahedron-first projection of the bitruncated tesseract into 3D space has a truncated cubical envelope. Two of the truncated octahedral cells project onto a truncated octahedron inscribed in this envelope, with the square faces touching the centers of the octahedral faces. The 6 octahedral faces are the images of the remaining 6 truncated octahedral cells. The remaining gap between the inscribed truncated octahedron and the envelope are filled by 8 flattened truncated tetrahedra, each of which is the image of a pair of truncated tetrahedral cells.
Colored transparently with pink triangles, blue squares, and gray hexagons |
Truncated 16-cell | ||
---|---|---|
Schlegel diagram (octahedron cells visible) |
||
Type | Uniform polychoron | |
Schläfli symbol | t0,1{4,3,3} t0,1{31,1,1} |
|
Coxeter-Dynkin diagrams | ||
Cells | 24 | 8 3.3.3.3 16 3.6.6 |
Faces | 96 | 64 {3} 32 {6} |
Edges | 120 | |
Vertices | 48 | |
Vertex figure | square pyramid |
|
Dual | Hexakis tesseract | |
Coxeter groups | BC4 [3,3,4] D4 [31,1,1] |
|
Properties | convex | |
Uniform index | 16 17 18 |
The truncated 16-cell which is bounded by 24 cells: 8 regular octahedra, and 16 truncated tetrahedra.
It is related to, but not to be confused with, the 24-cell, which is a regular polychoron bounded by 24 regular octahedra.
The truncated 16-cell may be constructed from the 16-cell by truncating its vertices at 1/3 of the edge length. This results in the 16 truncated tetrahedral cells, and introduces the 8 octahedra (vertex figures).
(Truncating a 16-cell at 1/2 of the edge length results in the 24-cell, which has a greater degree of symmetry because the truncated cells become identical with the vertex figures.)
The Cartesian coordinates of the vertices of a truncated 16-cell having edge length 2√2 are given by all permutations, and sign combinations:
An alternate construction begins with a demitesseract with vertex coordinates (±3,±3,±3,±3), having an even number of each sign, and truncates it to obtain the permutations of
The truncated tetrahedra are joined to each other via their hexagonal faces. The octahedra are joined to the truncated tetrahedra via their triangular faces.
The octahedron-first parallel projection of the truncated 16-cell into 3-dimensional space has the following structure:
This layout of cells in projection is analogous to the layout of faces in the projection of the truncated octahedron into 2-dimensional space. Hence, the truncated 16-cell may be thought of as the 4-dimensional analogue of the truncated octahedron.
The truncated tetrahedron first parallel projection of the truncated 16-cell into 3-dimensional space has the following structure:
Coxeter plane | B4 | B3 / D4 / A2 | B2 / D3 |
---|---|---|---|
Graph | |||
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | F4 | A3 | |
Graph | |||
Dihedral symmetry | [12/3] | [4] |
net |
stereographic projection (centered on truncated tetrahedron) |
Name | tesseract | rectified tesseract |
truncated tesseract |
cantellated tesseract |
runcinated tesseract |
bitruncated tesseract |
cantitruncated tesseract |
runcitruncated tesseract |
omnitruncated tesseract |
---|---|---|---|---|---|---|---|---|---|
Coxeter-Dynkin diagram |
|||||||||
Schläfli symbol |
{4,3,3} | t1{4,3,3} | t0,1{4,3,3} | t0,2{4,3,3} | t0,3{4,3,3} | t1,2{4,3,3} | t0,1,2{4,3,3} | t0,1,3{4,3,3} | t0,1,2,3{4,3,3} |
Schlegel diagram |
|||||||||
B4 Coxeter plane graph | |||||||||
Name | 16-cell | rectified 16-cell |
truncated 16-cell |
cantellated 16-cell |
runcinated 16-cell |
bitruncated 16-cell |
cantitruncated 16-cell |
runcitruncated 16-cell |
omnitruncated 16-cell |
Coxeter-Dynkin diagram |
|||||||||
Schläfli symbol |
{3,3,4} | t1{3,3,4} | t0,1{3,3,4} | t0,2{3,3,4} | t0,3{3,3,4} | t1,2{3,3,4} | t0,1,2{3,3,4} | t0,1,3{3,3,4} | t0,1,2,3{3,3,4} |
Schlegel diagram |
|||||||||
B4 Coxeter plane graph |